师资队伍

于瀚辰

于瀚辰

系所:房地产开发与管理系

职称:副教授

现任职务:

办公房间:学院楼407

邮箱:hanchenyu@cqu.edu.cn

办公电话:

教育经历

2010.9-2014.7 北京师范大学数学科学学院数学与应用数学专业 学士学位

2014.9-2019.7 北京大学政府管理学院区域经济学专业 博士学位


工作经历

2019.9-2021.6美国亚利桑那州立大学地理科学与城市规划学院 博士后(导师:Stewart Fotheringham院士)

2021.7-2022.6美国哈佛大学地理分析中心 博士后

2022.7-2022.9 美国哈佛大学 地理分析中心 副研究员

2022.9-2024.7 香港科技大学(广州)城市治理与设计学域 访问助理教授

2024.7-至今 重庆大学管理科学与房地产学院 副教授


兼职职务

中国地理学会空间综合人文社会科学工作委员会委员

中国遥感应用协会社会遥感地理计算专业委员会委员

中国人工智能学会社会计算与社会智能专业委员会青年委员

美国哈佛大学空间数据实验室区域政策和未来工作实验室联合主任

Humanities and Social Sciences Communications期刊编委

Mathematics客座编辑

Annals of the American Association of Geographers》、《International Journal of Geographical Information Science》、《npj Heritage Science》、《Humanities and Social Sciences Communications》、、Geographical Analysis》、《Spatial Statistics》、《Geography and Sustainability》、《Population Space and Place》、《Journal of Environmental Modeling and Software》、《International Journal of Urban Sciences》、《Applied Spatial Analysis and Policy》、《International Journal of Disaster Risk Reduction》、《International Journal of Information Technology & Decision Making》、《Growth and Change》等20本期刊匿名审稿人


开设课程
研究专长

空间/时空数据分析与建模、地理人工智能(GeoAI)、城市研究、区域经济学、健康地理学、交通研究、空间计量经济学、空间统计学、地理信息科学。长期专注于地理加权回归(GWR)建模方法的开发与应用,在该领域有一定的专业知名度。

每年有一定的学硕和专硕名额,与多所海内外名校学者有深度合作,能够推荐致力于学术研究的优秀学生前往深造。硕士期间将培养学生空间数据分析能力,支持学生从事方法创新和方法应用研究。与国内头部私人农业企业构建了深度合作关系,可为投身行业领域的优秀学子提供专业化研究场景及实习机会。



代表性成果

1. Gu, H., Lin, Y., Hu, H., & Yu, H*. (2025). COVID-19 pandemic and road infrastructure exerted stage-dependent spatiotemporal influences on inter-city road travel 

in China. Humanities and Social Sciences Communications, 12(1), 1-13.

2. Yu, H. (2025). Generalized Geographically and Temporally Weighted Regression. Computers, Environment and Urban Systems, 117: 102244.

3. Zhang, T., Yu, H.*, Kari, S. (2025). Empowering Entrepreneurs: Age, Telework, and Geographic Context in Transitioning to Entrepreneurship. Entrepreneurship 

& Regional Development, 1-37.

4. Yu, H., & Fotheringham, A.S. (2025). On the Calibration of Multiscale Geographically and Temporally Weighted Regression Models. International Journal 

of Geographical Information Science, 1–20.

5. Yu, H. (2024). Exploring Multiscale Spatial Interactions: Multiscale Geographically Weighted Negative Binomial Regression. Annals of the American Association 

of Geographers, 114(3): 574-590.

6. Sachdeva, M., Fotheringham, A.S., Li, Z. & Yu, H. (2023). On the Local Modeling of Count Data: Multiscale Geographically Weighted Poisson Regression. 

International Journal of Geographical Information Science, 37(10): 2238-2261.

7. Yu, H., Lao, X., Gu, H., Zhao, Z., & He, H. (2022). Understanding the Geography of COVID-19 Case Fatality Rates in China: New Evidence from a Spatial 

Autoregressive Probit-Log Linear Hurdle Analysis. Frontiers in Public Health, 10: 751768.

8. Fotheringham, A.S., Yu, H., Oshan, T., Wolf, L.J. & Li, Z. (2022). On the Notion of ‘Bandwidth’ in Geographically Weighted Regression Models of Spatially 

Varying Processes. International Journal of Geographical Information Science, 36(8): 1485-1502.

9. Pramanik, S., Punia, M., Yu, H., Chakraborty S. (2022). Is Dense or Sprawl Growth More Prone to Heat-related Health Risks? Spatial Regression-based Study 

in Delhi, India. Sustainable Cities and Society, 81: 103808.

10. Liu, L., Yu, H., Zhao, J., Wu, H., Peng, Z., & Wang, R. (2022). Multiscale Effects of Multimodal Public Facilities Accessibility on Housing Prices based on MGWR. 

ISPRS International Journal of Geo-Information, 11(1): 57.

11. Fischer, J., Sersli, S., Nelson, T., Yu, H., Laberee, K., Winters, M., & Zanotto, M. (2022). Spatial Variation in Bicycling Risk Based on Crowdsourced Safety Data. 

The Canadian Geographer, 66(3): 556-568.

12. Lao, X., Gu, H., Deng X., Yang J., Gao Q., & Yu, H. (2022). Comparing Intercity Mobility Patterns among Different Holidays in China based on Tencent migration 

data. Applied Spatial Analysis and Policy, 15(4): 993-1020.

13. Liu, L., Wang, R., Guan, W., Bao, S., Yu, H., Fu, X., & Liu, H. (2022). Assessing Reliability of Geotagged Social Media Data for Spatiotemporal Representation of 

Human Mobility: A Comparison between Sina Weibo and Baidu Qianxi. ISPRS International Journal of Geo-Information, 11(2): 145.

14. Yu, H., & Fotheringham, A.S. (2021). A Multiscale Measure of Spatial Dependence Based on a Discrete Fourier Transform. International Journal of 

Geographical Information Science, 36(5): 849-872.

15. Yu, H., Li, J., Bardin, S., Gu, H. & Fan, C. (2021). Spatiotemporal Dynamic of COVID-19 Diffusion in China: A Dynamic Spatial Autoregressive Model Analysis. 

ISPRS International Journal of Geo-Information, 10(8): 510.

16. Song, J., Yu, H., Lu, Y. (2021). Spatial-scale Dependent Risk Factors Associated with Heat-related Mortality: A Multiscale Geographically Weighted Regression 

Analysis. Sustainable Cities and Society, 74: 103159.

17. Sachdeva M., Fotheringham, A.S., Li, Z., & Yu, H. (2021). Are We Modelling Spatially Varying Processes or Non-linear Relationships?. Geographical Analysis, 

54(4): 715-738.

18. Lao, X., Gu, H., Yu, H., & Xiao, F. (2021). Exploring the Spatially-varying Effects of Human Capital on Urban Innovation in China. Applied Spatial Analysis and 

Policy, 14(4): 827-848. 

19. Zhao, Z., Lao, X., Gu, H., Yu, H., & Lei, P. (2021). How does Air Pollution Affect Urban Settlement of the Floating Population in China? New evidence from 

a push-pull migration analysis. BMC Public Health, 21: 1-15.

20. Yu, H., Fotheringham, A.S., Li, Z., Oshan, T., Kang, W. & Wolf, L.J. (2020). Inference in Multiscale Geographically Weighted Regression. Geographical Analysis, 

52: 87-106. (ESI Highly Cited Paper, Wiley Top Downloaded Paper 2018-2019)

21. Yu, H., Fotheringham, A.S., Li, Z., Oshan, T. & Wolf, L.J. (2020). On the Measurement of Bias in Geographically Weighted Regression Models. Spatial Statistics, 

38: 100453.

22. Gu, H., Yu, H., Mehak, S., & Liu, Y. (2020). Analyzing Distribution of Scientific Researchers in China: An Approach using Multiscale Geographically Weighted 

Regression (MGWR). Growth and Change, 52(1): 443-459.

23. Nelson, T., Roy, A., Ferster, C., Fischer, J., Brum-Bastos, V., Laberee, K., Winters, M., & Yu, H. (2020). Generalized Model for Mapping Bicycle Ridership with 

Crowdsourced Data. Transportation Research Part C, 125: 102981.

24. Geng, S., Ma, M., Hu, X., & Yu, H. (2020). Multi-scale Geographically Weighted Regression Modeling of Urban and Rural Construction Land Fragmentation—

A Case Study of the Yangtze River Delta region. IEEE Access, 10: 7639-7652.

25. Oshan, T., Wolf, L. J., Fotheringham, A. S., Kang, W., Li, Z. & Yu, H. (2019). A Comment on Geographically Weighted Regression with Parameter-Specific 

Distance Metrics. International Journal of Geographical Information Science. 33(7): 1289-1299. 

26. 古恒宇, 张亮, 于瀚辰*. 高技能人才分布格局的驱动因素及其对区域创新的影响 [J]. 地理学报,2025, 80(6): 1465-1481.

27. 王春超, 肖艾平, 于瀚辰. 近朱者赤,近墨者黑——教育中的非对称同伴效应研究[J]. 教育学报, 2022, 18(5): 156-171.

28. 沈体雁, 于瀚辰, 周麟, 古恒宇, 何泓浩. 北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)[J]. 经济地理, 2020, 40(3): 75-83.

29. 于瀚辰, 周麟, 沈体雁. 制造业企业区位选择集聚经济指向的空间效应[J]. 地理研究, 2019, 38(2): 273-284.

30. 于瀚辰, 沈体雁, 孙童. 中国ICT设备制造业的动态空间分异[J]. 地域研究与开发, 2019, 38(01): 1-5.

31. 王彦博, 于瀚辰, 沈体雁. 可调整个体优先级的双边匹配算法[J]. 计算机工程与应用, 2018, 54(11): 198-203+235.

32. 周麟, 沈体雁, 于瀚辰, 曹巍韡, 槐玲. 城市内部知识密集型服务业的时空格局研究——以保定市为例[J]. 城市发展研究, 2016, 23(11): 1-6.

33. 齐子翔, 于瀚辰. 区位选择、双边匹配与化解产能过剩的机制设计[J]. 改革, 2015(09): 101-111.



科研项目

1. 京津冀产业跨区域转移与非首都功能疏解路径研究(编号:15CJL061),国家哲学社会规划办公室资助。参与者

2. 中国经济密度空间格局与演化机制研究(编号:41071076),国家自然科学基金资助。参与者

3. 中国空间经济学理论与实践研究(No. 13&ZD166),国家哲学社会规划办公室资助。参与者

4. 基于双边匹配理论的企业区位配置模型和区位市场设计(编号:71473008),国家自然科学基金资助。参与者

5. 中国产业集群地图系统(CCM)建设与应用研究(编号:17ZDA055),国家哲学社会规划办公室资助。参与者

6. 地方政府土地流转策略交互行为分析(No. 2018M631224),中国博士后科学基金资助。参与者

7. NSF Project: The Measurement of Scale and Process Heterogeneity Through Local Multivariate Models

8. Spatial Data Lab Project: Workflows for COVID-19 Data Collecting, Processing, and Analysis Sponsored by NSF RAPID Project and NSF/IAB Membership

9. NSF RAPID Project: Building a Spatiotemporal Platform for a Rapid Response to COVID-19

10. The Dataverse Project: An Open-source Web Application to Share, Preserve, Cite, Explore, and Analyze Research Data


获奖情况

中国人工智能学会-大数据与社会计算2024社会计算青年学者新星

Wiley Top Downloaded Paper 2018-2019论文奖

2015年河北省第三次全国经济普查研究课题二等奖