2010.9-2014.7 北京师范大学数学科学学院数学与应用数学专业 学士学位
2014.9-2019.7 北京大学政府管理学院区域经济学专业 博士学位
系所:房地产开发与管理系
职称:副教授
现任职务:
办公房间:学院楼407
邮箱:hanchenyu@cqu.edu.cn
办公电话:
2010.9-2014.7 北京师范大学数学科学学院数学与应用数学专业 学士学位
2014.9-2019.7 北京大学政府管理学院区域经济学专业 博士学位
2019.9-2021.6美国亚利桑那州立大学地理科学与城市规划学院 博士后(导师:Stewart Fotheringham院士)
2021.7-2022.6美国哈佛大学地理分析中心 博士后
2022.7-2022.9 美国哈佛大学 地理分析中心 副研究员
2022.9-2024.7 香港科技大学(广州)城市治理与设计学域 访问助理教授
2024.7-至今 重庆大学管理科学与房地产学院 副教授
中国地理学会空间综合人文社会科学工作委员会委员
中国遥感应用协会社会遥感地理计算专业委员会委员
中国人工智能学会社会计算与社会智能专业委员会青年委员
美国哈佛大学空间数据实验室区域政策和未来工作实验室联合主任
《Annals of the American Association of Geographers》、《Geographical Analysis》、
《Spatial Statistics》等20本SCI/SSCI期刊匿名审稿人
空间/时空数据分析与建模、空间计量经济学、空间统计学、地理人工智能(GeoAI)、地理信息科学
1. Yu, H. (2024). Exploring Multiscale Spatial Interactions: Multiscale Geographically Weighted Negative Binomial Regression. Annals of the American Association of Geographers, 114(3): 574-590.
2. Sachdeva, M., Fotheringham, A.S., Li, Z. & Yu, H. (2023). On the Local Modeling of Count Data: Multiscale Geographically Weighted Poisson Regression. International Journal of Geographical Information Science, 37(10): 2238-2261.
3. Yu, H., Lao, X., Gu, H., Zhao, Z., & He, H. (2022). Understanding the Geography of COVID-19 Case Fatality Rates in China: New Evidence from a Spatial Autoregressive Probit-Log Linear Hurdle Analysis. Frontiers in Public Health, 10: 751768.
4. Fotheringham, A.S., Yu, H., Oshan, T., Wolf, L.J. & Li, Z. (2022). On the Notion of ‘Bandwidth’ in Geographically Weighted Regression Models of Spatially Varying Processes. International Journal of Geographical Information Science, 36(8): 1485-1502.
5. Pramanik, S., Punia, M., Yu, H., Chakraborty S. (2022). Is Dense or Sprawl Growth More Prone to Heat-related Health Risks? Spatial Regression-based Study in Delhi, India. Sustainable Cities and Society, 81: 103808.
6. Liu, L., Yu, H., Zhao, J., Wu, H., Peng, Z., & Wang, R. (2022). Multiscale Effects of Multimodal Public Facilities Accessibility on Housing Prices based on MGWR. ISPRS International Journal of Geo-Information, 11(1): 57.
7. Fischer, J., Sersli, S., Nelson, T., Yu, H., Laberee, K., Winters, M., & Zanotto, M. (2022). Spatial Variation in Bicycling Risk Based on Crowdsourced Safety Data. The Canadian Geographer, 66(3): 556-568.
8. Lao, X., Gu, H., Deng X., Yang J., Gao Q., & Yu, H. (2022). Comparing Intercity Mobility Patterns among Different Holidays in China based on Tencent migration data. Applied Spatial Analysis and Policy, 15(4): 993-1020.
9. Liu, L., Wang, R., Guan, W., Bao, S., Yu, H., Fu, X., & Liu, H. (2022). Assessing Reliability of Geotagged Social Media Data for Spatiotemporal Representation of Human Mobility: A Comparison between Sina Weibo and Baidu Qianxi. ISPRS International Journal of Geo-Information, 11(2): 145.
10. Yu, H., & Fotheringham, A.S. (2021). A Multiscale Measure of Spatial Dependence Based on a Discrete Fourier Transform. International Journal of Geographical Information Science, 36(5): 849-872.
11. Yu, H., Li, J., Bardin, S., Gu, H. & Fan, C. (2021). Spatiotemporal Dynamic of COVID-19 Diffusion in China: A Dynamic Spatial Autoregressive Model Analysis. ISPRS International Journal of Geo-Information, 10(8): 510.
12. Song, J., Yu, H., Lu, Y. (2021). Spatial-scale Dependent Risk Factors Associated with Heat-related Mortality: A Multiscale Geographically Weighted Regression Analysis. Sustainable Cities and Society, 74: 103159.
13. Sachdeva M., Fotheringham, A.S., Li, Z., & Yu, H. (2021). Are We Modelling Spatially Varying Processes or Non-linear Relationships?. Geographical Analysis, 54(4): 715-738.
14. Lao, X., Gu, H., Yu, H., & Xiao, F. (2021). Exploring the Spatially-varying Effects of Human Capital on Urban Innovation in China. Applied Spatial Analysis and Policy, 14(4): 827-848.
15. Zhao, Z., Lao, X., Gu, H., Yu, H., & Lei, P. (2021). How does Air Pollution Affect Urban Settlement of the Floating Population in China? New evidence from a push-pull migration analysis. BMC Public Health, 21: 1-15.
16. Yu, H., Fotheringham, A.S., Li, Z., Oshan, T., Kang, W. & Wolf, L.J. (2020). Inference in Multiscale Geographically Weighted Regression. Geographical Analysis, 52: 87-106. (ESI Highly Cited Paper, Wiley Top Downloaded Paper 2018-2019)
17. Yu, H., Fotheringham, A.S., Li, Z., Oshan, T. & Wolf, L.J. (2020). On the Measurement of Bias in Geographically Weighted Regression Models. Spatial Statistics, 38: 100453.
18. Gu, H., Yu, H., Mehak, S., & Liu, Y. (2020). Analyzing Distribution of Scientific Researchers in China: An Approach using Multiscale Geographically Weighted Regression (MGWR). Growth and Change, 52(1): 443-459.
19. Nelson, T., Roy, A., Ferster, C., Fischer, J., Brum-Bastos, V., Laberee, K., Winters, M., & Yu, H. (2020). Generalized Model for Mapping Bicycle Ridership with Crowdsourced Data. Transportation Research Part C, 125: 102981.
20. Geng, S., Ma, M., Hu, X., & Yu, H. (2020). Multi-scale Geographically Weighted Regression Modeling of Urban and Rural Construction Land Fragmentation—A Case Study of the Yangtze River Delta region. IEEE Access, 10: 7639-7652.
21. Oshan, T., Wolf, L. J., Fotheringham, A. S., Kang, W., Li, Z. & Yu, H. (2019). A Comment on Geographically Weighted Regression with Parameter-Specific Distance Metrics. International Journal of Geographical Information Science. 33(7): 1289-1299.
22. 王春超, 肖艾平, 于瀚辰. 近朱者赤,近墨者黑——教育中的非对称同伴效应研究[J]. 教育学报, 2022, 18(5): 156-171.
23. 沈体雁, 于瀚辰, 周麟, 古恒宇, 何泓浩. 北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)[J]. 经济地理, 2020, 40(3): 75-83.
24. 于瀚辰, 周麟, 沈体雁. 制造业企业区位选择集聚经济指向的空间效应[J]. 地理研究, 2019, 38(2): 273-284.
25. 于瀚辰, 沈体雁, 孙童. 中国ICT设备制造业的动态空间分异[J]. 地域研究与开发, 2019, 38(01): 1-5.
26. 王彦博, 于瀚辰, 沈体雁. 可调整个体优先级的双边匹配算法[J]. 计算机工程与应用, 2018, 54(11): 198-203+235.
27. 周麟, 沈体雁, 于瀚辰, 曹巍韡, 槐玲. 城市内部知识密集型服务业的时空格局研究——以保定市为例[J]. 城市发展研究, 2016, 23(11): 1-6.
28. 齐子翔, 于瀚辰. 区位选择、双边匹配与化解产能过剩的机制设计[J]. 改革, 2015(09): 101-111.
1. 京津冀产业跨区域转移与非首都功能疏解路径研究(编号:15CJL061),国家哲学社会规划办公室资助。参与者
2. 中国经济密度空间格局与演化机制研究(编号:41071076),国家自然科学基金资助。参与者
3. 中国空间经济学理论与实践研究(No. 13&ZD166),国家哲学社会规划办公室资助。参与者
4. 基于双边匹配理论的企业区位配置模型和区位市场设计(编号:71473008),国家自然科学基金资助。参与者
5. 中国产业集群地图系统(CCM)建设与应用研究(编号:17ZDA055),国家哲学社会规划办公室资助。参与者
6. 地方政府土地流转策略交互行为分析(No. 2018M631224),中国博士后科学基金资助。参与者
7. NSF Project: The Measurement of Scale and Process Heterogeneity Through Local Multivariate Models
8. Spatial Data Lab Project: Workflows for COVID-19 Data Collecting, Processing, and Analysis Sponsored by NSF RAPID Project and NSF/IAB Membership
9. NSF RAPID Project: Building a Spatiotemporal Platform for a Rapid Response to COVID-19
10. The Dataverse Project: An Open-source Web Application to Share, Preserve, Cite, Explore, and Analyze Research Data
中国人工智能学会-大数据与社会计算2024社会计算青年学者新星
Wiley Top Downloaded Paper 2018-2019论文奖
2015年河北省第三次全国经济普查研究课题二等奖